
Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

A Graph-Based Approach to Action Sequence

Optimization in Turn-Based RPGs: A Case Study of

Honkai: Star Rail

Lutfi Hakim Yusra 135230841

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523084@itb.ac.id, 2luthfihakimyusra@gmail.com

Abstract—This paper presents a computational model to

solve the action-sequencing problem within the popular RPG,

Honkai: Star Rail. We model the game's combat as a

deterministic state-space tree, where each node represents a

unique game state and each edge represents a possible action.

By applying graph traversal algorithms, specifically a search

method enhanced with bounding techniques, we can identify

the optimal path from an initial state to a victory condition.

This approach transforms the abstract challenge of strategic

planning into a solvable pathfinding problem. The model was

implemented in Java, utilizing simplified but representative

character kits and game mechanics to ensure feasibility.

Experimental results show that the model successfully

generates a strategically coherent and efficient sequence of

actions, effectively managing character synergies and

resources in a way that mirrors expert-level human strategy.

Keywords—Turn-Based RPG, Pathfinding, State-Space

Search, A* Algorithm, Optimization, Honkai: Star Rail

I. INTRODUCTION

The global market for game development is

experiencing a period of unprecedented expansion, with

both developers and players continually redefining the

frontiers of interactive entertainment. Within this dynamic

landscape, the turn-based Role-Playing Game (RPG)

genre has solidified its position, captivating audiences not

with high-speed reflexes, but with deep strategic

complexity. Modern iterations of these games have

evolved far beyond simple attack-and-defend mechanics,

now featuring intricate systems where success hinges on

foresight, resource management, and precise planning.

The core challenge for a player is often not just deciding

what to do, but determining the optimal sequence of

actions, as the timing and order of operations can

dramatically alter the outcome of a critical encounter.

This paper delves into this complex strategic layer by

using the popular turn-based RPG Honkai: Star Rail as a

comprehensive case study. Combat in this game is

orchestrated via an action timeline that dictates when

player characters and enemies take their turns, governed

primarily by a "Speed" attribute. However, this timeline is

not static; it is a fluid battlefield that can be manipulated

through character abilities that inflict delays, grant extra

actions, or alter turn priority. This creates an

exceptionally rich decision-making space. A single

choice—for instance, whether to use a character's ultimate

ability now for immediate damage or to save it for a more

opportune moment after an ally has applied a defense-

reducing debuff—can have cascading effects, making the

identification of the most effective action sequence a non-

trivial cognitive puzzle.

The central thesis of this paper is that this intricate

problem of action sequencing can be rigorously modeled

and solved by leveraging the principles of graph theory.

We propose a computational model where the entire

combat scenario is represented as a vast state-space graph.

In this graph, each node is a unique state that encapsulates

a complete snapshot of the battle at a single moment: the

current turn order, the health and energy levels of all

units, and the status of all active buffs and debuffs. An

edge connecting one state to another represents a single

action—such as a character's attack or an enemy's special

move—that transitions the game from the preceding state

to the next.

To solve the puzzle of optimization, we will utilize

pathfinding algorithms, the cornerstone of navigating

graph structures. By assigning a quantitative "weight" or

"cost" to each edge—representing resources spent,

damage taken, or, most simply, the passage of a single

turn—the strategic goal of winning a battle efficiently is

transformed into the computational problem of finding the

shortest path from an initial state to a victory state. This

study will therefore implement established shortest path

algorithms to systematically explore the state-space graph

and identify a sequence of actions that is demonstrably

optimal under the defined cost metric. This deterministic

and interpretable approach stands in contrast to more

opaque methodologies like machine learning, offering

clear, analyzable results that are valuable for both players

and developers.

This paper, therefore, aims to develop and validate this

mailto:113523084@itb.ac.id
mailto:2luthfihakimyusra@gmail.com

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

graph-based framework. The initial goal is to construct a

robust computational model that can accurately translate

the complex mechanics of Honkai: Star Rail's combat into

a formal graph structure. Following this, the project will

implement pathfinding algorithms to navigate this graph,

with the objective of determining the optimal action

sequences required to successfully and efficiently

complete combat encounters. Ultimately, the broader

ambition is to present this analytical framework as a

powerful tool. For players, it can offer deeper strategic

insights, while for developers, it provides a quantitative

method for balancing character abilities, tuning encounter

difficulty, and creating more intelligent NPC adversaries.

This research contributes to the growing field of game

analytics by bridging the gap between intuitive human

strategy and the rigorous, data-driven optimizations.

II. THEORETICAL BASIS

A. Graph and Tree Theory

A graph is a fundamental structure in mathematics used

to model relationships between objects. It consists of

nodes (or vertices) and edges that connect them. For this

paper, we will focus on a specific type of graph: a tree. A

tree is a graph with no cycles, where any two vertices are

connected by exactly one path. It is an ideal structure for

representing hierarchical data or sequential decisions. A

tree consists of:

• A Root Node: The starting point of the tree.

• Parent and Child Nodes: Each node (except the

root) has exactly one parent, and can have

multiple child nodes.

• Leaf Nodes: Nodes that have no children,

representing endpoints.

 In the context of this paper, the turn-based combat of

Honkai: Star Rail is modeled as a state-space tree, which

is a directed tree where nodes represent states and edges

represent actions that transition between states.

• The root node of our tree represents the initial

game state at the beginning of a battle. This state

captures all relevant information, including

character health, enemy health, turn order, and

any active buffs or debuffs.

• From any given parent node (a game state), child

nodes are generated for every possible action

that can be taken. Each edge leading to a child

node represents a specific action (e.g., Character

A uses a skill, Enemy B attacks). This forms a

branching structure where each path from the

root represents a unique sequence of gameplay

events.

• Edge Weights represent the cost of an action. For

this analysis, the simplest cost is the progression

of the timeline. An action that advances the turn

counter would have a specific weight, allowing

the pathfinding algorithm to find the sequence of

actions that leads to victory in the fewest turns.

• Leaf nodes represent terminal states of the

combat, such as a victory state (all enemies

defeated) or a defeat state (all player characters

defeated).

By framing the problem this way, the strategic challenge

is transformed into finding the optimal path from the root

of the state-space tree to a victory leaf node.

Figure 2.1 State Space Tree

https://i.cs.hku.hk/~kpchan/cs23270/3.problem-

solving/problem-solving.html

B. Pathfinding Algorithm

Pathfinding algorithms are used to find the shortest or

optimal route between two nodes in a graph. By modeling

combat as a graph, we can use these algorithms to identify

the most efficient sequence of actions to achieve victory.

This paper will explore several foundational algorithms.

Uniform Cost Search is an algorithm that finds the least-

cost path from a source node to a target node in a

weighted graph. It is optimal because it always expands

the node with the lowest path cost from the source. It can

be thought of as Dijkstra's algorithm without a specific

target, exploring paths in order of increasing cost. The

UCS algorithm works as follows:

1. Initialize a priority queue (min-heap) and add the

starting node with a cost of 0.

2. Initialize a set or map to keep track of visited

nodes and their costs to avoid redundant

processing.

3. While the priority queue is not empty:

o Extract the node with the lowest cost

from the queue. Let this be the current

node.

https://i.cs.hku.hk/~kpchan/cs23270/3.problem-solving/problem-solving.html
https://i.cs.hku.hk/~kpchan/cs23270/3.problem-solving/problem-solving.html

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

o If the current node is the goal state, the

algorithm terminates, and the path is

returned.

o For each neighbor of the current node,

calculate the new path cost by adding

the edge weight to the current node's

cost.

o If the neighbor has not been visited or

the new cost is lower than its previously

recorded cost, add the neighbor to the

priority queue with its new cost.

Figure 2.2 Uniform Cost Search

https://www.naukri.com/code360/library/uninformed-

search-algorithms-in-artificial-intelligence

 The next algorithm that will be looked at is A*, which is

an extension of UCS that improves efficiency by using a

heuristic function. This heuristic estimates the cost from

the current node to the goal. A* balances the cost already

traveled from the start (g(n)) with the estimated cost to

the goal (h(n)). The algorithm prioritizes nodes with the

lowest combined value, f(n) = g(n) + h(n). The A*

algorithm works as follows:

1. Initialize a priority queue with the starting node.

Its cost is its heuristic estimate, h(n).

2. While the priority queue is not empty:

o Extract the node with the lowest f(n)

value. Let this be the current node.

o If the current node is the goal state, the

path is found.

o For each neighbor of the current node:

▪ Calculate the tentative cost

from the start to this neighbor,

g(neighbor).

▪ If this path to the neighbor is

better than any previous one,

record it.

▪ Add the neighbor to the

priority queue, prioritized by

its f(n) value.

Figure 2.3 A* Algorithm

https://www.geeksforgeeks.org/a-search-algorithm/

 Branch and Bound is an algorithm design paradigm for

optimization problems. While often used for more

complex problems, its principles apply here. It

systematically explores the state-space graph by breaking

the problem into smaller subproblems (branching) and

discarding subproblems that are guaranteed not to contain

an optimal solution (bounding). The algorithm can be

adapted for shortest path finding as follows:

1. Start at the source node. Initialize the best_cost

to infinity.

2. Explore a path, recursively or iteratively

branching out to neighbors.

3. At each node, check validity with a function.

4. Bound: If the current path is deemed invalid,

prune this branch.

5. If a path reaches the goal node, compare its total

cost to best_cost. If it's lower, update best_cost.

Figure 2.4 Branch and Bound

https://www.geeksforgeeks.org/introduction-to-branch-

and-bound-data-structures-and-algorithms-tutorial/

https://www.naukri.com/code360/library/uninformed-search-algorithms-in-artificial-intelligence
https://www.naukri.com/code360/library/uninformed-search-algorithms-in-artificial-intelligence
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/introduction-to-branch-and-bound-data-structures-and-algorithms-tutorial/
https://www.geeksforgeeks.org/introduction-to-branch-and-bound-data-structures-and-algorithms-tutorial/

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

 These algorithms will be utilized to search the combat

state-space graph. The starting node will be the initial

state of a battle, and the goal will be a state where all

enemies are defeated. By applying UCS, A*, or Branch

and Bound, we can systematically discover the sequence

of actions (the path) that minimizes the total cost, which

is the action value, thereby finding the optimal way to win

the encounter. Branches will be pruned when certain

characters are unable to perform their most optimal move

in a ‘state’, and the searching will follow UCS or A*.

C. Honkai: Star Rail Calculation

To accurately model the game state and the transitions

between states, it is essential to define the core mechanics

mathematically. The following sections detail the key

formulas that govern combat in Honkai: Star Rail.

Action Value (AV) is the core mechanic determining

turn order. It represents the "time" a unit must wait for its

next turn. The unit with the lowest AV acts next. This will

be the main deterministic value for the cost of a state.

• Formula for Base AV: A unit's Base AV is

inversely proportional to its Speed (SPD). This

value is the amount of AV they must recover

after an action.

Base AV = 10000 / SPD

• Turn Progression: The game progresses by

subtracting the AV of the current actor (who has

0 AV) from every unit on the field. This brings

the next unit to 0 AV, allowing them to act. After

a unit completes its turn, its AV is reset to its

Base AV.

• AV Modification: Abilities can directly

manipulate the AV, which is crucial for turn

optimization.

o Action Advance: Reduces a unit's

current AV, allowing them to act

sooner.

New AV = Current AV * (1 -

Percentage Advance)

o Speed Buff/Debuff: Speed changes do

not alter a unit's current AV but will

affect their next turn by changing their

Base AV calculation.

Total SPD = Base SPD * (1 + % SPD

Buffs) + Flat SPD Buffs

 The damage dealt by any ability is calculated through a

series of multiplicative steps that factor in character stats,

enemy defenses, and various buffs and debuffs. The

general outgoing damage formula is:

Final Damage = Base Damage × Crit Multiplier ×

Damage % Multiplier × DEF Multiplier × RES Multiplier

× Vulnerability Multiplier × Toughness Multiplier

• Base Damage: The initial damage value,

dependent on the character's core offensive stat

(ATK, HP, or DEF) and the ability's scaling.

Base Damage = (Skill Multiplier × Scaling Stat)

+ Additional Flat Damage

• Crit Multiplier: If an attack critically hits, the

damage is increased by the character's Crit DMG

stat. Crit Multiplier = 1 + Crit DMG

• Damage % Multiplier: A sum of all general

and specific damage bonuses (e.g., Elemental

DMG Bonus, All-Type DMG Bonus). Damage

% Multiplier = 1 + Elemental DMG% + All-

Type DMG% + Other specific DMG% bonuses

• Defense (DEF) Multiplier: Represents the

damage reduction from the enemy's defense.

DEF Multiplier = (Character Level + 20) /

((Enemy Level + 20) * (1 - DEF Reduction) +

(Character Level + 20))

• Resistance (RES) Multiplier: Represents the

damage reduction from the enemy's resistance to

the attack's element. RES Multiplier = 1 -

(Enemy RES - RES PEN)

• Vulnerability Multiplier: Represents bonus

damage taken by an enemy from debuffs.

Vulnerability Multiplier = 1 + Vulnerability

Debuffs

• Toughness Multiplier: A flat damage reduction

applied if the enemy's Toughness bar is not

broken. Toughness Multiplier = 0.9 (if

Toughness is present) or 1.0 (if Toughness is

broken)

III. CODE IMPLEMENTATION

The theoretical model was implemented using the Java

programming language, chosen for its strong object-

oriented features and robust Collection framework, which

provides efficient data structures like PriorityQueue for

managing the search algorithm's open set. The primary

goal of this implementation is not to create a perfect

replica of Honkai: Star Rail, but rather to build a

deterministic model that captures its core strategic

mechanics—turn order, resource economy, and ability

usage—to test the pathfinding hypothesis. Emulating the

game's precise, moment-to-moment experience, with its

countless variables and random elements, is both

impractical and unnecessary for this paper's scope.

Therefore, simplifications were made, such as

standardizing the outcomes of random events like critical

hits. While this may lead to slight deviations from actual

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

in-game results, the core logic remains intact, ensuring

the findings on turn optimization are reliable.

The implementation is structured around several key

classes representing the game's combat entities. A

Character abstract class serves as the blueprint for all

playable units, defining common attributes like HP,

Speed, and Energy, along with methods for actions. Four

concrete characters were implemented: Archer (a generic

damage dealer), Sparkle (a support who manipulates skill

points and turn order), Silver Wolf (a debuffer), and

Gallagher (a healer). To streamline the problem, the

Enemy is a passive "damage sponge" with a large health

pool that does not perform actions, focusing the

optimization challenge entirely on the player's actions.

The most crucial component is the immutable State data

structure, which represents a single node in the state-

space tree. A State object contains a complete snapshot of

the combat, including the status of all units, available skill

points, and the total action value consumed to reach that

point.

The pathfinding logic is encapsulated within a Solver

class, which takes an initial State and explores the state-

space tree to find a path to the victory condition: the

enemy's health reaching zero. The solver generates the

tree by creating a new child State for every possible

action a character can take, with the cost of each

transition calculated from the action value consumed. To

manage the massive potential size of this tree, an effective

bounding algorithm is hard-coded into the state expansion

logic. This prunes branches that are guaranteed to be

invalid or suboptimal. For example, if a character's best

action requires a skill point but the current state has none

(e.g., Sparkle needing to use her skill), the solver prunes

that entire branch before creation. This prevents the

algorithm from exploring long, inefficient paths that start

with a suboptimal move, thereby significantly narrowing

the search to the most promising routes.

Figure 3.1 Character Class

Private Documentation

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

Figure 3.2 ActionQueue Class

Private Documentation

Figure 3.3 DamageFormula Class

Private Documentation

Figure 3.4 State Class

Private Documentation

Figure 3.5 State Creation from Existing State

Private Documentation

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

Figure 3.6 Base Solver Class

Private Documentation

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the developed model, a

specific test case was designed to simulate a common

strategic scenario in Honkai: Star Rail. The setup

involved a four-person team tasked with defeating a

single, high-health enemy. The initial conditions and

character stats were configured programmatically to

create a consistent starting point for the solver.

The team was composed of Archer (a primary damage

dealer with a base speed of 98), Sparkle (a high-speed

Harmony support with 161 speed, designed to manipulate

the turn order), Silver Wolf (a very high-speed Nihility

debuffer with 181 speed), and Gallagher (a fast

healer/support with 171 speed). All characters were

initialized with half of their maximum energy, allowing

for the potential use of Ultimate abilities early in the

sequence. The target was a single, passive Enemy with

1,000,000 HP, acting as a "damage sponge" to test the

long-term efficiency of the generated action sequence.

The primary objective for the solver was to find the

sequence of actions that defeats this enemy in the

minimum possible total action value. The state is setup

with 3 initial skill points.

Figure 4.1 Setting Up the Test State

Private Documentation

The test was initiated by creating an initial State object

reflecting these parameters and passing it to the Solver

class. The solver then executed its pathfinding algorithm,

exploring the state-space tree to find the most efficient

path to a victory state. The output generated by the solver

is a step-by-step sequence of optimal actions. The output

of the program is as follows:

 Figure 4.2 Output

Private Documentation

The results demonstrate that the model successfully

identifies a strategically coherent sequence of actions that

aligns with established player heuristics. The algorithm

correctly prioritized the setup actions, using the highest-

speed character, Silver Wolf, to apply a crucial defense

debuff before the primary damage dealer's turn. It also

leveraged the synergistic relationship between Sparkle

and Archer, using Sparkle's action-advancing ability to

maximize damage output. Furthermore, the sequence

shows intelligent resource management, with support

characters using basic attacks to restore skill points when

their primary abilities were not needed. The bounding

mechanism was critical here; for instance, if Sparkle's

Makalah IF2211 Strategi Algoritma – Teknik Informatika ITB –Semester II Tahun 2024/2025

turn arrived with zero skill points, the solver would have

pruned the invalid "use Skill" branch.

V. CONCLUDING REMARKS AND FUTURE WORK

In summary, this paper has successfully developed and

demonstrated a computational model for optimizing

action sequences in the turn-based RPG, Honkai: Star

Rail. By representing the complex flow of combat as a

deterministic state-space tree, we have translated an

abstract strategic challenge into a solvable pathfinding

problem. The application of graph search algorithms to

this model proved effective, with the experimental results

showcasing the system's ability to generate a strategically

coherent sequence of actions that aligns with established

player heuristics. The model intelligently managed

character synergies and resource constraints to identify a

path to victory, confirming that discrete mathematics

provides a powerful framework for analyzing and solving

complex gameplay puzzles.

Looking ahead, while this model serves as a successful

proof of concept, there are several avenues for significant

expansion and refinement. The most critical area for

improvement lies in the optimization of the search

algorithm itself. The current bounding method is effective

but elementary; future work should focus on developing

more sophisticated heuristics for an A* search

implementation. A well-designed heuristic could

drastically reduce the search space by more accurately

estimating the "cost" to victory from any given state,

leading to substantially faster computation times.

Furthermore, the fidelity of the combat simulation could

be greatly enhanced. The current model simplifies many

game mechanics for feasibility. A more advanced version

could incorporate the complexities of character gear

(Relics), detailed Light Cone effects, and even

probabilistic outcomes like critical hits, which would

bring the model's optimal path even closer to true in-game

performance.

It is also important to note that the scope of this project

was constrained by a tight time limit. With additional

time, the aforementioned algorithmic optimizations and

simulation enhancements could have been explored more

thoroughly, leading to a more robust and comprehensive

analytical tool. Nonetheless, this paper lays a strong

foundation, demonstrating the viability of using graph

theory and pathfinding algorithms to deconstruct and

optimize strategic gameplay.

The following is the link to the source code:

https://github.com/pixelatedbus/hsr-turn-optimization

The following is the link to the video (BONUS):

https://youtu.be/nOiK34CwmyQ

VII. ACKNOWLEDGMENT

The author wishes to express heartfelt gratitude to

several parties for their support in the creation of this

paper. First, gratitude is extended to God for His guidance

throughout the process of learning and writing. The

author also acknowledges the invaluable teachings and

support of Mr. Rinaldi Munir, the lecturer of ITB's

Strategi Algoritma IF2211 course, whose guidance

greatly enriched the learning experience. Finally, the

author thanks their family and friends for their

unwavering support throughout the semester

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the

Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2,

pp. 100–107, 1968

[2] E. W. Dijkstra, "A Note on Two Problems in Connexion with

Graphs," Numerische Mathematik, vol. 1, no. 1, pp. 269-271,

1959.

[3] M. A. Goodrich and R. Tamassia, Data Structures and Algorithms
in Java, 6th ed. Hoboken, NJ, USA: Wiley, 2014.

[4] Prydwen.gg, "Honkai: Star Rail Damage Formula," Prydwen

Institute, 2024. [Online]. Available: https://www.prydwen.gg/star-
rail/guides/damage-formula

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Lutfi Hakim Yusra 13523084

https://github.com/pixelatedbus/hsr-turn-optimization
https://youtu.be/nOiK34CwmyQ

